Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.

To: Homicide Squad

From: Josie Thiele, David Brazel, Harry Bartlett, CSI Investigators

Date: 12/7/10

Re: Professor Millstone Murder Case

            Using the provided samples this laboratory sought to identify the dog responsible for the murder of Dr. Millstone. After careful analysis of the DNA samples submitted, the results obtained do not support a definitive conclusion as to the identity of the canine attacker. However, the results do eliminate Dr. Hedd’s dog and indicate that the responsible canine must be a closely related male, possibly the dog of the suspect student.

            Evidence submitted included dog hairs and saliva swabs from the victim, and the dogs of both suspects, Dr. Hedd and an unidentified student. Isolation and amplification of the hair and saliva samples was performed using Promega Tissue and Hair Extraction Kit and the DNA IQ kit, respectively. The extracted DNA was used as template for the polymerase chain reaction (PCR) amplification of PEZ2, PEZ15, and VWF.X, chromosomal short tandem repeat (STR) regions, CHR.X and SRY, sex specific markers, and W3/6 , a mitochondrial locus. The PCR products were analyzed by either polyacrylamide gel electrophoresis (PAGE) or agarose gel electrophoresis and the canine STR and sex profiles were determined.

            Figures 2 and 3 show the PAGE gel analysis of the nuclear PCR-STR products. Generally, the Millstone, Hedd and student samples had identical STR profiles. Both the number of bands and the calculated size of the bands were identical. Unfortunately, there was an issue with the amplification of the student hair and saliva samples for PEZ2, for all of the hair samples for PEZ 15, and the student hair for VWF.X. In all cases, except for student samples for PEZ2, there is still applicable data showing the comparisons across the three samples. It is possible that there was an error in the extraction of the hair DNA, leading to a failure in amplification. The calculated probability of a randomly selected canine having this profile is .2%. As was stated in the investigators report, both suspect dogs were bought from the same breeder. Based on this information, and the reported STR profiles, there is reason to believe that all three samples were taken from closely related dogs, likely as close as siblings, or even twins. From this it can be concluded that the dog that attacked Professor Millstone is either one of the two suspect dogs, or almost certainly a very close relative of those two dogs.

            Figure 4 shows the PAGE analysis of the mitochondrial products. The successful amplification of the controls and the ladder indicate that both the PCR and the PAGE analysis were successful. The STR profile obtained for all samples was identical and distinct from the control. This profile is identical across all samples tested, regardless of tissue. This does contradict the results of some investigators, however, since only two tissue types were analyzed it is possible that additional analysis would have revealed variation within each dog. This indicates that the dogs either all have the same mother, or their mothers are closely related. The probability of a random canine having this profile is 7.1%.

            Figure 1 shows the agarose gel of the tandem PCR amplification of sex specific loci, CHR.X and SRY. The ladder indicates that the gel was run successfully, and the control male and female samples show that the PCR ran successfully and show the banding that is characteristic of the X and Y chromosomes. As shown in Table 1, the presence of the X chromosome is associated with a PCR product of approximately 169bp, and the Y chromosome is associated with a product of approximately 120bp. The investigators’ report indicated that the student’s dog was a male, and Hedd’s dog was a female. The PCR results for the student’s and Hedd’s dog were equivocal and do not show consistent results for each sample. However, the gel does show that the DNA found on Millstone came from a male canine, eliminating Hedd’s dog as a suspect. We suspect that the error was caused by sample contamination. Reports indicate that the sampling may have been done without proper forensic techniques, so new samples should be taken to guarantee proper results.

            The complete STR profiles obtained for both the mitochondrial locus and chromosomal loci indicate that the felonious runt in question was either one of the two suspect dogs or a very closely related dog. The probability of a random unrelated dog having the profile found is .014%. The sex specific PCR indicates that the dog must be a male, eliminating Hedd’s dog. It is also important to look into the breeding practices of the breeder from which these dogs were bought. If they engaged in interbreeding the number of closely related dogs, which could have provided the profile found, could be quite high. Further investigation should include resampling using proper techniques, running additional loci, and questioning of the breeder to determine the likely number of closely related dogs that could have provided the profile found.


Eichmann, C., Berger, B., Steinlechner, M., and Parson, W. (2005) Estimating the probability of identity in a random dog population using 15 highly polymorphic canine STR markers, Forensic Science International 151, 37-44.

Gundry, R. L., Allard, M. W., Moretti, T. R., Honeycutt, R. L., Wilson, M. R., Monson, K. L.,and Foran, D. R. (2007) Mitochondrial DNA analysis of the domestic dog: control region variation within and among breeds, J. Forensic Sci. 52, 562-572.

Savolainen, P., Arvestad, L., and Lundeberg, J. (2000) A novel method for forensic DNA investigations: repeated-type sequence analysis of tandemly repeated mtDNA in domestic dogs, J. Forensic Sci. 45, 990-999.