1. Derive a velocity equation for an ordered bisubstrate enzyme with a competitive inhibitor for the substrate that binds first using the rapid equilibrium assumption.

2. A particular uni uni enzyme has a glutamate in its active site that must be deprotonated for the enzyme to be active. In its local environment, this particular Glu has a pK_a of 6.0. The effect of pH on the activity of an enzyme was assessed. The substrate and the product of the reaction are both positively charged throughout the pH range of the experiment.

 a. Sketch a graph for V_0 as a function of pH in a situation where the substrate concentration is much greater than the K_M value.

 b. On the same axes, sketch a graph for V_0 as a function of pH in a situation where the substrate concentration is much less than the K_M value.

 c. At what pH with the velocity equal $\frac{1}{2}$ of the maximal velocity attainable under these conditions.

3. You discover a novel hydrolase that de-acetylates asparagine residues on polypeptides.

 a. Propose a kinetic mechanism for this enzyme.

 b. Design a small molecule that could act as a competitive inhibitor for this enzyme.